PartIA Analysis

zc231

Each question will be labeled in the form «, 5y where o € {1, 2, 3,4} represents the paper number,
B represents the question number in that paper. For example, 1,11G means question 11G in paper
1. I will omit the proofs in the notes or book work. The solutions provided might not be the best
ways to solve the problems and if you find any mistakes or if you have any elegant ways of solving
some of the problems please email me at zc231@Qcam.ac.uk.
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1,3F a, = T = T — 5. Let rp, =vn*+n—n= T T 2 Then
cos(2m(Vn? + n)) = cos(2nr, + 2mn) = cos(27r,) cos(2mn) — sin(27r,,) sin(27n) = cos(27r,)
and cos(27r,) — cos(m) = —1 (you probably need to state that cos is continuous). Then use
the fact

2

2cos“x — 1 = cos2zx

so b, — ((—1)+1)/2=0.
1,4F The first part is book work. Let a, = (2% — 1).

1,9F (a) If sin(z) = 1 then clearly the series diverges. If sin(z) = —1 then the series converges
because it is alternating and decreasing. But it does not converge absolutely because the

modulus of each term has the form ‘w > %

Let r = sinz and a,, = % then
", I
a,| < S 2L LAl
YDUNED DS it
n n n
which converges for any |r| < 1 so for any other values of x it converges absolutely.

(b) For all value of x, the series converges because it is alternating and decreasing. If sinz #
41 then the series converges absolutely because

Oorn o0
- < n

(Well I guess in the exam you probably need to explain why > % diverges (which is stan-
dard), and by the same argument you can show ) \/Lﬁ diverges so may be there is no need

to use comparison).
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(c) sin(0.99z) € [—1,1] and so sin(0.992) € [—7/2,7/2]. Therefore, if sin(0.99x) > 0 then
a, > 0 for all n and if sin(0.99x) < 0 then a, < 0 for all n. So in this case, if the series
converges then it is absolutely convergent.

Firstly assume sin(0.992) > 0. Since sinz < x for x > 0 so sin(0.99sin(x)) < 0.99z and
by induction, it is clear that a, < 0.99"x and thus by comparison this converges for all
x with sin(0.99z) > 0 (as z is fixed so basically it is a sum of geometric sequence). Now
suppose sin(0.99x) < 0 then a, = —b, where b, = sin(0.99sin(- - - (sin(—0.99z)))) and
sin(—0.99z) > 0 so b, < 0.99"(—z) and so ) b, converges for all z with sin(0.992) < 0
and hence ) a, converges. Therefore, we conclude that the series converges absolutely
for all x.

Let d(z) = (x — a)* + (f(x) — b)? which is the square of the distance from a point (z, f(x))
to P = (a,b). Since f(z) is continuous, so is d(x). We firstly show that d(z) has a minimum.
Clearly d(z) is bounded below by 0 so d(z) has a greatest lower bound, say M and so there
exists a sequence x, € R with d(z,) — M. Also d(z) > (z — a)®> > 2M whenever |z| > N
for some large N. Therefore, for n large enough we have |z,| > N. Then by B-W we have a
convergent subsequence x,,;, — y and d(z,,) — d(y) because d is continuous and z € R as R is
complete. But d(z,) — M so we conclude that d(y) = M and so the greatest lower bound is
attained. So d(z) > M for all x € R.

Given any number r € R, r > M, pick = with d(z) > r (which is always possible as
d(z) > (z — a)?) then by IVT we conclude that there exists ¢ between x and y such that
d(c) = r. Since r is arbitrary so we conclude that the image of d(z) is an interval. Hence the
distance function is an interval (because if d'(x)? = d(x) then d'(x) > « if and only if d(z) > a?).

o(a) = ¢(b) = —g(b)f(a) + f(b)g(a) and so the result follows by Rolle’s theorem. Take a,b
with 0 < a < b and g(a) # g(b) and we have

fla) = f(b) _ f'(c)
gla) —g(b)  g'(c)

As 2@ 5 150 for all € > 0, there exists 0 > 0 such that

g (z)
e fl(z) €
l— = [+ = 0.
2<g,(96)< +2,0<x<

,a<c<b.

Thus pick b < and 0 < a < b < § we have, from above that

c _J@—fO) _ @),y
l_§<g(a)—g(b)_g’(c)<l+2’0< <c<b<o.

Now let a — 0, so we have

e _ f(b) €
l—e<l—=-—<—=<I[+=-<1 0<b<é.
€ 5 S g(b) <+ 5 + €, <
As € is arbitrary, this shows that lim,_, % =1

For the second part, let sup f —inf f = M. For all € > 0, pick 6 < 33; and take the a;, b;’s

by assumption. Then on each [a;, b;], since f is integrable so we pick a partition D; with
S(f, D;) = s(f, D;) < 5=. On [bs, a;41], we have the contribution
S(f: biy aiva] — s(f, [bi; aia]) < M.

2



and since ) .(b; —a;) > 1 — 38 50 Y. (aiy1 — b;) < 0 so the total contribution is less than A/6.
Therefore, let D = U;D; U; [b;, a;+1] we have

S(f,D) — s(f, D) <n%+M§<e.

Fix n and let a; = 107" 4+ 100~". Take D = {a; : ¢ = 0,1,...,10" — 1} U{0,1}. Then there
are exactly 2" intervals for which f is non-zero (to see this, consider b; = 107" then there are
2™ points of b; are non-zero). Then S(f, D) = 2"107" = 5", Therefore, for each € > 0 pick n
with 57" < € we have S(f, D) < € and hence f is integrable and the integral is 0.
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1,3D The sum Z anz diverges for |z| > R. Suppose |z| = S > R, and |a,2"| is bounded by M,
then |a,| < 4. Now pick r with R < r < S, then for |z| = r, we have

;\anzﬂ < ;M%

which converges, and so R is not the radius of convergence, which is a contradiction.
The radius of convergence is 1 by ratio test.

14E 14+2+---+n =n(n+1)/2 and so the limit for the first one is 1/2. For the second one, let

ar = n so loga, = 10% — 0 so a, — 1. For the last one, we have b(1 + ‘;—:)% — b because

% <1 and cn — 1 for any constant c.

+1 __ _n" 1 :
= — 2 SO the series converges.

19E (a) By

(b) By condensation test we consider » a,, with
1

n 29 20 n

2" +n?log”2  1+log” 25

ay, =
but a, — 1 as n — oo so the series diverges (if it converges then a,, — 0).

(c) Converges by alternating test.

(d) Consider when n is odd then
1 1 1 1 -2 1 1

nt g =——F o< —— = < —— — ————
On F nt1 n+3(n—|—1) w30 3n 3n  3(n+1)

Thus 33 a,| > 30, L whenever N is even and the sum is unbounded so it diverges.

1,10F Taylor series with Lagrange remainder

hn—l
(n—1)!

flath) = fla) +hf'(@) + - +

Since €'(z) = e(z) and
differentiable and e™ (z

Y (a) + % ™ (a+ 0h),0 € (0,1).

e(x) is differentiable, by induction we conclude that e(z) is infinitely
) = e(x) Pick a = 0,h = x we have

$2 n—1 "
6(1‘) :1+$+?+"'+m+me(‘9n$),9n€ (0,1)
and this is true for any n. Now for each x, e is differentiable and hence continuous, so let M
be the maximum of |e| on [0, z] and hence |e(f,,x)| < M whatever 6, is (as long as 6, < 1).
Then for all € > 0, there exists N such that for all n > N,
x?’b

—| M <e
n! -

n . .
because T+ — 0 as x is fixed. Therefore, the series converges to e(z) and so

e(zr) = Z %

n=0
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The first two are book work. The third part is integral test, and use that for the last part, we
consider, for a < 0, # —1 (clearly if & > 0 then a,, is unbounded hence the series diverges)

floo x®dx which diverges for « > —1 and converges otherwise.

f is differentiable at 0 and f’(0) = 0 because by definition

i @) = £(0)

) T T
= xsign(x) ’cos—‘ = ’xcos—’ <|z| —0
z—0 x X x

where we write zsign(x) = |z| for = # 0.

The idea of the second part is basically to show |cosz| is not differentiable at any = with
cosz = 0 because clearly z? and sign(x) are both differentiable at z # 0(this is just the
intuition). Therefore, we consider x = Jﬁ and let h = Til%? then x + h = 2n2+1 —o and
f(z) = 0. Also pick |m| large enough so that  + h > 0, and we assume n is even (this is not

necessary but it makes the situation simple).
2 1 1
cos < n2—|— m(1+ —)) '

2 1 1
cos(ThL Sl >‘—(x+h)2
2 m m

fx+h)=(x+h)?

which then gives

2 1 2 1 2 1
(x4 h)? cos( n2+ T+ T;:T_L W)’ = (v +h)? sin( T;:r; w) ,
Therefore,
_flet+h) = fl@) ol /2n+1 \|2n+1
}lll_rf(l) h = mgriloo(x + h)* |sin Syl 5 (—m —1)
which we will rewrite as (and use z + h = anﬂ )
sin (25747) | (20 + 1) am?  (—m - 1)
Ii h 2 2m . 1) =
AL T | T T S e
where we used lim,_, % = 1. We see the above limit is —7 if m — —oo and is 7 if m — +00 so

the limit does not exist as h — 0 (so the idea is similar to how you show |z| is not differentiable
at 0). As n is arbitrary this completes the second part. I think in the exam you can just explain
this in the sense that | cos 7| is not differentiable at z = %ﬂ

Now if the limit exists at = # 0, which means (you can always drop the sign function by
considering « > 0 or < 0, because as h — 0 with fixed z, sign(z + h)=sign(z))

T

s
Jeos |~ Jeos 35|

cos Lh‘ —h 'cos

2 T _ 2 _m_
limx {cosx} (x+h) !cosx+h| T

h—0 h h—0 h T + T+ h

: ’

exists and since the limit of the last term exists (which is 0) so the limit of the above is the
same as the limit of the first two terms. Then it is clearly bounded because if you expand using
triangle inequality then the second term is bounded by 2|z| and the first term is also bounded
because at the point where the function is differentiable we must have cos % # 0 and so for h

small enough we conclude cos 7 and cos 77 have the same sign and so the first term is just
dcos T

+a? - Hence if you take any finite interval I, this will be bounded by some constant C

depending on I.
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(b): n (c): a, = 0if n is odd and a, = n if nis even. (d): as, = 2+ 1 ,Qan41 =
2+ 4n+1,a4n+2 m,a4n+3 4n+3 Therefore ¢ = 2 or 0.
(i): R =1 (ii): By root test we consider

(nn(l/B))(l/n) _ nn7(2/3) 1

so R =1.

Converge: a, = n—12 Diverge: a, = % For the second part, if you want to use the integral

method (compare the area etc.) then I think you have to justify lots of properties in integration
so here the method I suggest is: take x = k’l for £ > 1. Then we have —% > log% for all

k> 1. NOW—— ——forallk>1 Thus, Wehave
n—1 n—1 n—1
1 k—1 1
— =1+ 1l——)>n—1+ loe— =n—1—1log(n — 1)
2% ;( )2 ; g7 g(n—1)

Further, for n > 2, n —1 > logn! (as e ! > n) and hence the result follows.

We can ignore the first several terms so we start with n large enough, say n = N so that £ <1
and the condition holds then as = < 1 — £ we have

Il og(1— Sy < =&
ay, n n

log

and now pick N large enough so that for all n > N, e"n < % SO

c 1
Apt1 < ape n < §an.

Therefore, the series converges by comparison test.

If f(0) =0 or f(1) =
)—(l‘ so g(0)

1 then we are done. If not we have f(0) > 0 and f(1) < 1. Let
= f(0) >0 and g(1) = f(1) —1 < 0 so by IVT there exists ¢ such that

No. For example f(z) = 2? and 2> = x if and only if z = 0, 1.

(ii) No. For example, f(z) = e*. For 2 < 0, ¢ > 0 so e* # x. Forx > 0, ¢ =
l+x+a?/24 - >1+xs0e" # .

(iii) No. For example f(0) =1, f(1) =0 and f(z) = 2% for 0 < z < 1.

1—-22,0 <2 <41 flz) =3@@—3), -g

(iv) Yes. For example, f(x) = T
x < 1 then f is continuous, f(0) = 1, f(1) = 0 and 3,

(
only fixed points.

For the first one the only point of continuity is 0, for the others, say a # 0, if a € Q then for
all 0 > 0, pick h < 0 with a+h € Q, and |f(a) — f(a+ h)| = |2a — h| > |a| (with h small) and



1,12D

the case when a € Q is similar. But f is not differentiable at 0 because let a,, € Q, b, € Q be
two sequences tending to 0, but

fla) = F0) _ |

an, by,

so the limit of w as h — 0 does not exist.

For the second one, it is continuous at every x and differentiable at © # 0. To check it is
continuous at z = 0, by definition

| N S
lim | f(x) — £(0)] = lim | sin(1/2)| < lim [2] = 0

To see it is not differentiable at x = 0, we have

f(z) — f(0)

T

= sin(1/x)

which does not have a limit as x — 0.

Take f(z) = 2% if z € Q and f(z) = —2% if € Q then f’(0) = 0. By a similar argument as in
(i) we see f(z) is only continuous at 0 (hence not differentiable at any other point).

For the last part consider f(z) = |2?sinZ| for 0 < # < 1, f(0) = 0 and f(z) = 2*sinZ for
x> L. It is clear that this is not differentiable at  =1/2,1/3,... and f’(0) = 0. Outside the
interval [0,1/2], f(z) = #*sin T which is clearly differentiable.

Let f(z) =0,0 <z <1/2and f(z) =1,1/2 < 2 <1 then f(z) is integrable. But F(z) =0
if © < 1/2 and F(z) = (z — 1/2) for x > 1/2 it is not differentiable because it is not even
continuous at x = 1/2.

No. Let f(z) = z*sin(1/2%),z # 0 and f(0) = 0. Then f(z) is differentiable everywhere and
g(0) = f(0) = 0,9(x) = 2xsin(1/2?) — 2cos(1/2?),x # 0. This is unbounded and so not

T

integrable (so S(f, D) is not well-defined).
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f(z) = e cos(1/x) then f does not attain upper bound or lower bound. For the second part,
fix e > 0, there exists K > 0 such that f(z) < e for all || > K. Then f(z) < max{e, M} where
M = max{f(z) : || < M} (as f obtains maximum on closed interval [—M, M]) and so f is
bounded. Pick e small enough (so if we vary €, we will vary K so as € decreases, K will increase
and M will increase) such that e < M then we attain the upper bound at some = with f(z) = M.

Mfo dx—fo dx—fo Y(M — f(z))dx and since M — f(x) > 0 for all z € [0, 1]

and g(x) > 0 so the mtegral is non—negatlve (if A > 0, then fo x)dx > 0 because s(D,h) >
for all partition D).

Let M = maxpoy) [ and m = minp f, and if 1 = fol g(x)dx,

/f 2)de < M.

As f(x) is continuous so by IVT there exists v such that f(a) = 1 [; f(z)g(z)dx.

For all € > 0, there exists kx (for each k), such that for all n > kn, |y — 1| < e. Thus, let

(k)

N = maxg{ky} and so for all n > N, n > ky and z, is one of y, ' and so |z, — ] < e.

(4)

Let yﬁbn) = (—1)" and yﬁL = 1 for all n # j. Then it is clear that for all j, the sequence y;’ — 1.

But z, = (—1)" and it diverges.

It is clear by AM-GM inequality that b,.; > a,+1 with equality if and only if a,, = b,. Now
a1 < by and so inductively a,, < b,,. Also

n Vbn p—
ntl _ Vo0 oy ey — by = 2 <0
ap v an, 2

and so a, is increasing and b,, is decreasing. As a,, < b, < b for all n so a,, is bounded above

and so converges to some limit /;. Similarly, b,, is bounded below by a and so it converges to
ly.

Finally, let ¢, = b, — a, = (Vb — \/an)(v/bn + \/az,) then ¢, = M and so
Cn+1 o \/_ \/_ 1

e 2t a2

and therefore ¢, — 0. So [{ = ls.

(i) We may assume ap+1 — a, — 0 because if we set b, = a,, — nl and so b,.1 — b, — 0 and
b" = 9 _ [ 50 Y converges if and only if 2 converges. So now for each € > 0, there exists
Nl such that for all n > Ny,

and so N
bpi1 <bn+§ <bn_1+e<---<le+w
and so
byt (n— Nq)e by, € by,

<_ _
n+1  2n+1) n+l1 2 n+1l

bn, bnt
N+1 < +1

Now pick N large enough with



(ii) a, = —1if nis odd and a,, = 1 if n is even. Then clearly o2 — 0 but a,41 — a, does not
converge because a,1 — a, = 2 if n is odd and a1 — a, = —2 if n is even.

(iii) Let a, = Y1, + then for each fixed &,

1=1

n+k1 k
ik — Gp = Z - < ——0, asn — oo.

. n
1=n-+1

(iv) Suppose a,, does not converge then as a,, is real so (a,) is not Cauchy. There exists € > 0,
for all n, there exists m = g(n) > n such that |a,, — a,| > ¢. Now take this function

f(n) = g(n) —n then n+ f(n) = g(n) and so |anf@mn) — an| > € for all n which contradicts
the assumption. So a,, converges.

1,L11T (i) Fix0 <z <1 and let f*(x) = a, and a,41 = f(a,) < a, so a, is decreasing and bounded
below so a, converges to a limit [. Suppose [ > 0, then a,+1 = f(a,) — f(I) and so we
have f(I) =[. But for all [ > 0 we must have f(l) <[ and therefore [ = 0.

(ii) No. For example, let f(z) = x?. Take ¢ = 3, such that for all n, we pick « big enough

(close to 1) so that 22" > 1 (as n is fixed so pick z close to 1).

2

(iii) Construct a sequence a, with a; = %, 0 < apy1 < a, for all n and a, — % as n — 0o,

and a, # }l for all n. Now define the function f by f(z) = 3755 if © # a, for any n and

f(an) = ays1 for all n. Then f(z) < x for z € (0,1) and pick 2 = a1, f"(z) = a, — 3 # 0.

(iv) No. Let z = 0.ajas ... be the decimal expansion and for convention if x = 0.a; ... a, then
we write x = 0.a1 ... (a, — 1)999999. .. so that in this way the expansion is infinite. For
example, if = 0.2 we will write = 0.19999.... Let z = 0.00...a1ay.... Define f(x)
to be the function which switches the second non-zero term in the expansion of x to zero,
i.e. f(z)=0.00...a,0as.... Then for each z, f™(x) — 0.00...a; > 0.

1,12F Part (a) is book work. Let h(z) = >07 (—1)"Z~ then h(2z?) = f(z). h(z) has R = oo

(2n)!
which means for all z € R converges and so h(x?) converges for all z. Similarly, if h(z) =

ZZOIO(—l)”(QTf—_:l)! then h(x) has R = oo by ratio test then g(x) = xh(z?) and so it converges

for all z € R.
As f, g have R = oo so they are differentiable over R. Further,

= S G e S

Let h(z) = f?(x)+g*(x) then W' (z) = 2(f(x) f'(x)+g(x)g'(z)) = 0. Therefore, h(z) is constant
and h(0) = f(0) + ¢g(0) where f(0) =1 and ¢g(0) = 0 so h(z) = 1.



2013

13D exp(z) = 1+ 2 +2?/2+--- > 1+ for all z > 0. By expanding the product of []}_, (1 + a;)
the first inequality is clear, and the second inequality comes from the fact 1 + a; < exp(a;).

Suppose [[}(1+a;) converges then as a; > 0 so the sum ) a; converges by the first inequality
and conversely if } _ a; converges so does exp()_; a;) so the product converges by the second
inequality.

1,4F (a) is alternating test. For (b), use condensation and comparison tests, the series diverges.

1,9D (a) The first one converges for all = (as expected because it is exp(z)). The second one only
converges at x = 0 (as expected because nlz™ is unbounded for any x # 0). For the third
one, let a, = (n!)%z" then

41
— (n_|_ 1)23:271-1-1'
G,
Suppose |z| > 1 then “**2 — oo and so a,, is unbounded, so the series cannot converge.

n

Suppose |z| < 1, then we claim that for n large enough, we have b, = (n!)22""~" < 1. As

bn+1

= (n+1)%2"" =0

b

and so there exists n such that b,,1 < .

implies that

Hence for n large enough, b, < 1 and this

an = ()22 < 2"

and so by comparison test we conclude that the series ) a, converges absolutely for
|z| < 1. Therefore, R = 1.

(b) Let f(z) = (1+ )2 and for z € (0,1) f(z) is infinitely differentiable and

f(n)(x): %_1)(%_2>“'(%_n+1)(1+$)§_"

and the result follows by applying Taylor’s theorem with some remainder and we check
the remainder tends to 0 and the series converges. We have

Cny1 2n—1
¢,  2n+2

and so it converges for all z < 1.

Now if you pick Lagrange’s remainder then the remainder has the form, ¢, f™(fx) and
f™(0x) < 1 and so the modulus of the remainder is less than |c,|. But as the series
converges so ¢, — 0.

1,10E (a) is book work. For (b)

(i) Clearly if f is strictly increasing then f is injective. Suppose > y then f(z) > f(y)
because f is strictly increasing and so if f(z) < f(y) then x < y.

10



(ii) For a < x < b we have ¢ < f(z) < d and so ¢ is the minimum and d is the maximum.
Suppose f is not increasing, so we have a < z1 < x5 < b but f(x1) > f(x2). Let M be the
maximum of f on [a,xs] and as f is continuous take x3 with f(x3) = M > f(xq), M > ¢
and clearly z3 < xs.

Therefore, there exists x4 € (a,x3) such that f(xy) = f(z2) (if this is not clear, apply IVT
to the function g(x) = f(x) — f(x2)). As f is injective this gives a contradiction. This
shows f is increasing. To show it is strictly increasing, use the fact f is injective.

(iii) f attains maximum at b and minimum at a. Suppose f is not continuous at b, then

there exists a sequence z,, € [a,b] with z,, — b but f(z,) /4 f(b). We can assume z,, is
an increasing sequence (because it is bounded above and converges so we can remove all
'bad’ points). Also, f(x,) is increasing as both f and z, are, and it is bounded above
so f(xn) — 1. As f(x,) /4 f(b) sol < f(b) and pick r with [ < r < f(b) so by the
intermediate property we have y such that f(y) = r. But then as f(z,) <lsoy > z, for
all n and so the only possibility is y = b but f(y) = r < f(b) which gives a contradiction.
A similar argument shows f is continuous at a.
For general point = € (a,b), suppose f is not continuous at x. For any sequence x,, — x
with z, increasing and z,, < z, let f(x,) — {3 (limit exists as it is bounded above) and
yn, —  with y, decreasing and y,, > x, let f(y,) — lo. As f is not continuous at x, we
must have either some sequence x,, described above with l; # f(x) or some sequence y,
with Iy # f(x). We may assume l; # f(z). Then pick r with I; < r < f(x) and so we
have some y with f(y) = r. As f(y) > l; we have y > z,, for all n but z,, - z so y = z,
which contradicts f(y) < f(x).

1,11E The first two parts are book work. For the third part, consider the function

f(@)(g(b) — g(a)) — g(x)(f(b) — f(a))
and apply Rolle’s theorem so we get the Cauchy mean value theorem. Then

f@) _ fl@) = fla) _ f(2)
gx)  glx) —gla) ¢(2)

z € (a,x).

For all € > 0, there exists 6 > 0 such that for all z — a < 9,

/
l—€<f,(z) <l+e,
9'(2)
and so for all z —a < 9,
l—e<M:f/<Z) <l4+ez<zxr<a+d.
9(@)  g(2)

For the last part, apply (iii) once we have

po St ) = fla=h)=2f(@) . fla+h)—[(a—h)
h—0 h? h—0 2h

(where the numerator tends to 0 as h — 0 because f is continuous). Then since f is twice
differentiable, we have

fim L@t ) = fla=h) . flath)=Ffla) . fla)=fla=h) _fla) fa)

_penr
ey 2h P 2h PG 2h 2 y =)
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1,12F The first two are book work. Then for any Di, Dy we have

S(f7D1) SS(f7l)1Ul)2) SS(.ﬂDlUD?) SS(f>D2)

We have
s(f, D) < p(f, D) < exp(s(f, D))

(if you are not clear see question [1,3D]). Since f is integrable, f; f(z)dx exists and s(f, D) <
fab f(z)dz. Then p(f, D) < exp(fab f(z)dz) because exp is increasing.
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