
PartIA Analysis

zc231

Each question will be labeled in the form α, βγ where α ∈ {1, 2, 3, 4} represents the paper number,
βγ represents the question number in that paper. For example, 1,11G means question 11G in paper
1. I will omit the proofs in the notes or book work. The solutions provided might not be the best
ways to solve the problems and if you find any mistakes or if you have any elegant ways of solving
some of the problems please email me at zc231@cam.ac.uk.
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1,3F an = n
n+
√
n2−n = 1

1+
√

1−1/n
→ 1

2
. Let rn =

√
n2 + n− n = n√

n2+n+n
→ 1

2
. Then

cos(2π(
√
n2 + n)) = cos(2πrn + 2πn) = cos(2πrn) cos(2πn)− sin(2πrn) sin(2πn) = cos(2πrn)

and cos(2πrn) → cos(π) = −1 (you probably need to state that cos is continuous). Then use
the fact

2 cos2 x− 1 = cos 2x

so bn → ((−1) + 1)/2 = 0.

1,4F The first part is book work. Let an = (z2 − 1).

1,9F (a) If sin(x) = 1 then clearly the series diverges. If sin(x) = −1 then the series converges
because it is alternating and decreasing. But it does not converge absolutely because the

modulus of each term has the form
∣∣∣3(−1)n+1

n

∣∣∣ ≥ 2
n
.

Let r = sinx and an = 3+rn

n
then∑
n

|an| ≤
∑
n

3|r|n

n
+
∑
n

|r|2n

n

which converges for any |r| < 1 so for any other values of x it converges absolutely.

(b) For all value of x, the series converges because it is alternating and decreasing. If sinx 6=
±1 then the series converges absolutely because

∞∑
n=1

rn√
n
<

∞∑
n=1

rn.

If sin x = ±1 then it does not converges absolutely because

∞∑
n=1

1√
n
>

∞∑
n=1

1

n
.

(Well I guess in the exam you probably need to explain why
∑

1
n

diverges (which is stan-
dard), and by the same argument you can show

∑
1√
n

diverges so may be there is no need

to use comparison).
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(c) sin(0.99x) ∈ [−1, 1] and so sin(0.99x) ∈ [−π/2, π/2]. Therefore, if sin(0.99x) > 0 then
an > 0 for all n and if sin(0.99x) < 0 then an < 0 for all n. So in this case, if the series
converges then it is absolutely convergent.

Firstly assume sin(0.99x) > 0. Since sinx ≤ x for x ≥ 0 so sin(0.99 sin(x)) ≤ 0.99x and
by induction, it is clear that an ≤ 0.99nx and thus by comparison this converges for all
x with sin(0.99x) > 0 (as x is fixed so basically it is a sum of geometric sequence). Now
suppose sin(0.99x) < 0 then an = −bn where bn = sin(0.99 sin(· · · (sin(−0.99x)))) and
sin(−0.99x) > 0 so bn ≤ 0.99n(−x) and so

∑
n bn converges for all x with sin(0.99x) < 0

and hence
∑

n an converges. Therefore, we conclude that the series converges absolutely
for all x.

1,10D Let d(x) = (x − a)2 + (f(x) − b)2 which is the square of the distance from a point (x, f(x))
to P = (a, b). Since f(x) is continuous, so is d(x). We firstly show that d(x) has a minimum.
Clearly d(x) is bounded below by 0 so d(x) has a greatest lower bound, say M and so there
exists a sequence xn ∈ R with d(xn) → M . Also d(x) ≥ (x − a)2 > 2M whenever |x| > N
for some large N . Therefore, for n large enough we have |xn| ≥ N . Then by B-W we have a
convergent subsequence xnj → y and d(xnj)→ d(y) because d is continuous and x ∈ R as R is
complete. But d(xn) → M so we conclude that d(y) = M and so the greatest lower bound is
attained. So d(x) ≥M for all x ∈ R.

Given any number r ∈ R, r > M , pick x with d(x) > r (which is always possible as
d(x) ≥ (x − a)2) then by IVT we conclude that there exists c between x and y such that
d(c) = r. Since r is arbitrary so we conclude that the image of d(x) is an interval. Hence the
distance function is an interval (because if d′(x)2 = d(x) then d′(x) ≥ α if and only if d(x) ≥ α2).

1,11I φ(a) = φ(b) = −g(b)f(a) + f(b)g(a) and so the result follows by Rolle’s theorem. Take a, b
with 0 < a < b and g(a) 6= g(b) and we have

f(a)− f(b)

g(a)− g(b)
=
f ′(c)

g′(c)
, a < c < b.

As f ′(x)
g′(x)
→ l so for all ε > 0, there exists δ > 0 such that

l − ε

2
<
f ′(x)

g′(x)
< l +

ε

2
, 0 < x < δ.

Thus pick b ≤ δ and 0 < a < b ≤ δ we have, from above that

l − ε

2
<
f(a)− f(b)

g(a)− g(b)
=
f ′(c)

g′(c)
< l +

ε

2
, 0 < a < c < b ≤ δ.

Now let a→ 0, so we have

l − ε < l − ε

2
≤ f(b)

g(b)
≤ l +

ε

2
< l + ε, 0 < b ≤ δ.

As ε is arbitrary, this shows that limb→0
f(b)
g(b)

= l.

1,12E For the second part, let sup f − inf f = M . For all ε > 0, pick δ < ε
2M

and take the ai, bi’s
by assumption. Then on each [ai, bi], since f is integrable so we pick a partition Di with
S(f,Di)− s(f,Di) <

ε
2n

. On [bi, ai+1], we have the contribution

S(f, [bi, ai+1]− s(f, [bi, ai+1]) ≤M.
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and since
∑

i(bi − ai) ≥ 1 − δ so
∑

i(ai+1 − bi) ≤ δ so the total contribution is less than Mδ.
Therefore, let D = ∪iDi ∪i [bi, ai+1] we have

S(f,D)− s(f,D) < n
ε

2n
+Mδ < ε.

Fix n and let ai = 10−ni + 100−n. Take D = {ai : i = 0, 1, . . . , 10n − 1} ∪ {0, 1}. Then there
are exactly 2n intervals for which f is non-zero (to see this, consider bi = 10−ni then there are
2n points of bi are non-zero). Then S(f,D) = 2n10−n = 5−n. Therefore, for each ε > 0 pick n
with 5−n < ε we have S(f,D) < ε and hence f is integrable and the integral is 0.
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1,3D The sum
∑

n anz
n diverges for |z| > R. Suppose |z| = S > R, and |anzn| is bounded by M ,

then |an| ≤ M
Sn

. Now pick r with R < r < S, then for |z| = r, we have∑
n

|anzn| ≤
∑
n

M
rn

Sn

which converges, and so R is not the radius of convergence, which is a contradiction.
The radius of convergence is 1 by ratio test.

1,4E 1 + 2 + · · · + n = n(n + 1)/2 and so the limit for the first one is 1/2. For the second one, let

ann = n so log an = logn
n
→ 0 so an → 1. For the last one, we have b(1 + an

bn
)

1
n → b because

a
b
≤ 1 and c

1
n → 1 for any constant c.

1,9E (a) By ratio test, an+1

an
= nn

(n+1)n
→ 1

e
so the series converges.

(b) By condensation test we consider
∑
an with

an =
2n

2n + n2 log2 2
=

1

1 + log2 2 n
2n

but an → 1 as n→∞ so the series diverges (if it converges then an → 0).

(c) Converges by alternating test.

(d) Consider when n is odd then

an + an+1 = − 1

n
+

1

3(n+ 1)
< − 1

n
+

1

3n
=
−2

3n
< − 1

3n
− 1

3(n+ 1)
.

Thus |3
∑N

n=1 an| >
∑N

n=1
1
n

whenever N is even and the sum is unbounded so it diverges.

1,10F Taylor series with Lagrange remainder

f(a+ h) = f(a) + hf ′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+ θh), θ ∈ (0, 1).

Since e′(x) = e(x) and e(x) is differentiable, by induction we conclude that e(x) is infinitely
differentiable and e(n)(x) = e(x) Pick a = 0, h = x we have

e(x) = 1 + x+
x2

2
+ · · ·+ xn−1

(n− 1)!
+
xn

n!
e(θnx), θn ∈ (0, 1)

and this is true for any n. Now for each x, e is differentiable and hence continuous, so let M
be the maximum of |e| on [0, x] and hence |e(θnx)| ≤ M whatever θn is (as long as θn < 1).
Then for all ε > 0, there exists N such that for all n > N ,∣∣∣∣xnn!

∣∣∣∣M ≤ ε

because xn

n!
→ 0 as x is fixed. Therefore, the series converges to e(x) and so

e(x) =
∞∑
n=0

xn

n!
.
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1,11D The first two are book work. The third part is integral test, and use that for the last part, we
consider, for α < 0, α 6= −1 (clearly if α ≥ 0 then an is unbounded hence the series diverges)∫∞
1
xαdx which diverges for α ≥ −1 and converges otherwise.

1,12F f is differentiable at 0 and f ′(0) = 0 because by definition

lim
x→0

f(x)− f(0)

x
= xsign(x)

∣∣∣cos
π

x

∣∣∣ =
∣∣∣x cos

π

x

∣∣∣ ≤ |x| → 0

where we write xsign(x) = |x| for x 6= 0.

The idea of the second part is basically to show | cosx| is not differentiable at any x with
cosx = 0 because clearly x2 and sign(x) are both differentiable at x 6= 0(this is just the
intuition). Therefore, we consider x = 2

2n+1
and let h = 2

2n+1
−1
m+1

, then x + h = 2
2n+1

m
m+1

and
f(x) = 0. Also pick |m| large enough so that x + h > 0, and we assume n is even (this is not
necessary but it makes the situation simple).

f(x+ h) = (x+ h)2
∣∣∣∣cos

(
2n+ 1

2
π
m+ 1

m

)∣∣∣∣ = (x+ h)2
∣∣∣∣cos

(
2n+ 1

2
π(1 +

1

m
)

)∣∣∣∣
which then gives

(x+ h)2
∣∣∣∣cos

(
2n+ 1

2
π +

2n+ 1

2m
π

)∣∣∣∣ = (x+ h)2
∣∣∣∣sin(2n+ 1

2m
π

)∣∣∣∣ .
Therefore,

lim
h→0

f(x+ h)− f(x)

h
= lim

m→±∞
(x+ h)2

∣∣∣∣sin(2n+ 1

2m
π

)∣∣∣∣ 2n+ 1

2
(−m− 1)

which we will rewrite as (and use x+ h = 2
2n+1

m
m+1

)

lim
m→±∞

(x+ h)2

∣∣∣∣∣sin
(
2n+1
2m

π
)

(2n+1)π
2m

∣∣∣∣∣ (2n+ 1)2π

4|m|
(−m− 1) =

πm2

(m+ 1)2
(−m− 1)

|m|
.

where we used limx→0
sinx
x

= 1. We see the above limit is−π if m→ −∞ and is π if m→ +∞ so
the limit does not exist as h→ 0 (so the idea is similar to how you show |x| is not differentiable
at 0). As n is arbitrary this completes the second part. I think in the exam you can just explain
this in the sense that | cos π

x
| is not differentiable at x = 2

2n+1
.

Now if the limit exists at x 6= 0, which means (you can always drop the sign function by
considering x > 0 or x < 0, because as h→ 0 with fixed x, sign(x+ h)=sign(x))

lim
h→0

x2
∣∣cos π

x

∣∣− (x+ h)2
∣∣cos π

x+h

∣∣
h

= lim
h→0

x2
∣∣cos π

x

∣∣− ∣∣cos π
x+h

∣∣
h

− 2x

∣∣∣∣cos
π

x+ h

∣∣∣∣− h ∣∣∣∣cos
π

x+ h

∣∣∣∣
exists and since the limit of the last term exists (which is 0) so the limit of the above is the
same as the limit of the first two terms. Then it is clearly bounded because if you expand using
triangle inequality then the second term is bounded by 2|x| and the first term is also bounded
because at the point where the function is differentiable we must have cos π

x
6= 0 and so for h

small enough we conclude cos π
x

and cos π
x+h

have the same sign and so the first term is just

±x2 d cos
π
x

dx
. Hence if you take any finite interval I, this will be bounded by some constant C

depending on I.
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1,3F (b): an = n (c): an = 0 if n is odd and an = n if n is even. (d): a4n = 2 + 1
4n

,a4n+1 =
2 + 1

4n+1
,a4n+2 = − 1

4n+2
,a4n+3 = − 1

4n+3
. Therefore c = 2 or 0.

1,4D (i): R = 1 (ii): By root test we consider

(nn
(1/3)

)(1/n) = nn
−(2/3) → 1

so R = 1.

1,9F Converge: an = 1
n2 . Diverge: an = 1

n
. For the second part, if you want to use the integral

method (compare the area etc.) then I think you have to justify lots of properties in integration
so here the method I suggest is: take x = k−1

k
for k > 1. Then we have −k−1

k
> log 1

k
for all

k > 1. Now 1
k

= 1− k−1
k

for all k > 1. Thus, we have

n−1∑
k=1

1

k
= 1 +

n−1∑
k=2

(1− k − 1

k
) ≥ n− 1 +

n−1∑
k=2

log
1

k
= n− 1− log(n− 1)!.

Further, for n ≥ 2, n− 1 ≥ log n! (as en−1 ≥ n) and hence the result follows.

We can ignore the first several terms so we start with n large enough, say n = N so that c
n
< 1

and the condition holds then as an+1

an
< 1− c

n
we have

log
an+1

an
< log(1− c

n
) < − c

n

and now pick N large enough so that for all n > N , e−
c
n < 1

2
so

an+1 < ane
− c
n <

1

2
an.

Therefore, the series converges by comparison test.

1,10E If f(0) = 0 or f(1) = 1 then we are done. If not we have f(0) > 0 and f(1) < 1. Let
g(x) = f(x)− x so g(0) = f(0) > 0 and g(1) = f(1)− 1 < 0 so by IVT there exists c such that
g(c) = 0 so f(c) = c.

(i) No. For example f(x) = x2 and x2 = x if and only if x = 0, 1.

(ii) No. For example, f(x) = ex. For x ≤ 0, ex > 0 so ex 6= x. For x > 0, ex =
1 + x+ x2/2 + · · · > 1 + x so ex 6= x.

(iii) No. For example f(0) = 1, f(1) = 0 and f(x) = x2 for 0 < x < 1.

(iv) Yes. For example, f(x) = 1 − 2x, 0 ≤ x ≤ 1
2
, f(x) = 3(x − 1

2
), 1

2
≤ x ≤ 3

4
and

f(x) = −3(x − 1), 3
4
≤ x ≤ 1 then f is continuous, f(0) = 1, f(1) = 0 and 1

3
, 3
4

are the
only fixed points.

1,11E For the first one the only point of continuity is 0, for the others, say a 6= 0, if a 6∈ Q then for
all δ > 0, pick h < δ with a+ h ∈ Q, and |f(a)− f(a+ h)| = |2a− h| > |a| (with h small) and
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the case when a ∈ Q is similar. But f is not differentiable at 0 because let an ∈ Q, bn 6∈ Q be
two sequences tending to 0, but

f(an)− f(0)

an
= 1,

f(bn)− f(0)

bn
= −1

so the limit of f(h)−f(0)
h

as h→ 0 does not exist.

For the second one, it is continuous at every x and differentiable at x 6= 0. To check it is
continuous at x = 0, by definition

lim
x→0
|f(x)− f(0)| = lim

x→0
|x sin(1/x)| ≤ lim

x→0
|x| = 0.

To see it is not differentiable at x = 0, we have

f(x)− f(0)

x
= sin(1/x)

which does not have a limit as x→ 0.

Take f(x) = x2 if x ∈ Q and f(x) = −x2 if x 6∈ Q then f ′(0) = 0. By a similar argument as in
(i) we see f(x) is only continuous at 0 (hence not differentiable at any other point).

For the last part consider f(x) =
∣∣x2 sin π

x

∣∣ for 0 < x ≤ 1
2
, f(0) = 0 and f(x) = x2 sin π

x
for

x > 1
2
. It is clear that this is not differentiable at x = 1/2, 1/3, . . . and f ′(0) = 0. Outside the

interval [0, 1/2], f(x) = x2 sin π
x

which is clearly differentiable.

1,12D Let f(x) = 0, 0 ≤ x ≤ 1/2 and f(x) = 1, 1/2 < x ≤ 1 then f(x) is integrable. But F (x) = 0
if x ≤ 1/2 and F (x) = (x − 1/2) for x > 1/2 it is not differentiable because it is not even
continuous at x = 1/2.

No. Let f(x) = x2 sin(1/x2), x 6= 0 and f(0) = 0. Then f(x) is differentiable everywhere and
g(0) = f ′(0) = 0,g(x) = 2x sin(1/x2) − 2

x
cos(1/x2), x 6= 0. This is unbounded and so not

integrable (so S(f,D) is not well-defined).
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1,3E f(x) = e−x cos(1/x) then f does not attain upper bound or lower bound. For the second part,
fix ε > 0, there exists K > 0 such that f(x) < ε for all |x| > K. Then f(x) ≤ max{ε,M} where
M = max{f(x) : |x| ≤ M} (as f obtains maximum on closed interval [−M,M ]) and so f is
bounded. Pick ε small enough (so if we vary ε, we will vary K so as ε decreases, K will increase
andM will increase) such that ε < M then we attain the upper bound at some x with f(x) = M .

1,4F M
∫ 1

0
g(x)dx−

∫ 1

0
f(x)g(x)dx =

∫ 1

0
g(x)(M − f(x))dx and since M − f(x) ≥ 0 for all x ∈ [0, 1]

and g(x) ≥ 0 so the integral is non-negative (if h ≥ 0, then
∫ 1

0
h(x)dx ≥ 0 because s(D, h) ≥ 0

for all partition D).

Let M = max[0,1] f and m = min[0,1] f , and if I =
∫ 1

0
g(x)dx,

m ≤ 1

I

∫ 1

0

f(x)g(x)dx ≤M.

As f(x) is continuous so by IVT there exists α such that f(α) = 1
I

∫ 1

0
f(x)g(x)dx.

1,9E For all ε > 0, there exists kN (for each k), such that for all n > kN , |y(k)n − l| < ε. Thus, let

N = maxk{kN} and so for all n > N , n > kN and xn is one of y
(k)
n and so |xn − l| < ε.

Let y
(n)
n = (−1)n and y

(j)
n = 1 for all n 6= j. Then it is clear that for all j, the sequence y

(j)
n → 1.

But xn = (−1)n and it diverges.

It is clear by AM-GM inequality that bn+1 ≥ an+1 with equality if and only if an = bn. Now
a1 < b1 and so inductively an < bn. Also

an+1

an
=

√
bn√
an

> 1, bn+1 − bn =
an − bn

2
< 0

and so an is increasing and bn is decreasing. As an < bn < b for all n so an is bounded above
and so converges to some limit l1. Similarly, bn is bounded below by a and so it converges to
l2.

Finally, let cn = bn − an = (
√
bn −

√
an)(
√
bn +

√
an) then cn+1 =

(
√
bn−
√
an)2

2
and so

cn+1

cn
=

√
bn −

√
an

2(
√
bn +

√
an)

<
1

2

and therefore cn → 0. So l1 = l2.

1,10D (i) We may assume an+1 − an → 0 because if we set bn = an − nl and so bn+1 − bn → 0 and
bn
n

= an
n
− l so bn

n
converges if and only if an

n
converges. So now for each ε > 0, there exists

N1 such that for all n > N1,

bn+1 − bn <
ε

2
and so

bn+1 < bn +
ε

2
< bn−1 + ε < · · · < bN1 +

(n−N1)ε

2
and so

bn+1

n+ 1
<

(n−N1)ε

2(n+ 1)
+

bN1

n+ 1
<
ε

2
+

bN1

n+ 1

Now pick N large enough with
bN1

N+1
< ε

2
so now for all n > N we have bn+1

n+1
< ε.
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(ii) an = −1 if n is odd and an = 1 if n is even. Then clearly an
n
→ 0 but an+1 − an does not

converge because an+1 − an = 2 if n is odd and an+1 − an = −2 if n is even.

(iii) Let an =
∑n

i=1
1
i

then for each fixed k,

an+k − an =
n+k∑
i=n+1

1

i
<
k

n
→ 0, as n→∞.

(iv) Suppose an does not converge then as an is real so (an) is not Cauchy. There exists ε > 0,
for all n, there exists m = g(n) > n such that |am − an| > ε. Now take this function
f(n) = g(n)−n then n+ f(n) = g(n) and so |an+f(n)− an| > ε for all n which contradicts
the assumption. So an converges.

1,11I (i) Fix 0 < x < 1 and let fn(x) = an and an+1 = f(an) < an so an is decreasing and bounded
below so an converges to a limit l. Suppose l > 0, then an+1 = f(an) → f(l) and so we
have f(l) = l. But for all l > 0 we must have f(l) < l and therefore l = 0.

(ii) No. For example, let f(x) = x2. Take ε = 1
2
, such that for all n, we pick x big enough

(close to 1) so that x2
n
> 1

2
(as n is fixed so pick x close to 1).

(iii) Construct a sequence an with a1 = 1
2
, 0 < an+1 < an for all n and an → 1

4
as n → ∞,

and an 6= 1
4

for all n. Now define the function f by f(x) = x
1000

if x 6= an for any n and
f(an) = an+1 for all n. Then f(x) < x for x ∈ (0, 1) and pick x = a1, f

n(x) = an → 1
4
6= 0.

(iv) No. Let x = 0.a1a2 . . . be the decimal expansion and for convention if x = 0.a1 . . . an then
we write x = 0.a1 . . . (an − 1)999999 . . . so that in this way the expansion is infinite. For
example, if x = 0.2 we will write x = 0.19999 . . .. Let x = 0.00 . . . a1a2 . . .. Define f(x)
to be the function which switches the second non-zero term in the expansion of x to zero,
i.e. f(x) = 0.00 . . . a10a3 . . .. Then for each x, f (n)(x)→ 0.00 . . . a1 > 0.

1,12F Part (a) is book work. Let h(x) =
∑∞

n=0(−1)n xn

(2n)!
then h(x2) = f(x). h(x) has R = ∞

which means for all x ∈ R converges and so h(x2) converges for all x. Similarly, if h(x) =∑∞
n=0(−1)n xn

(2n+1)!
then h(x) has R = ∞ by ratio test then g(x) = xh(x2) and so it converges

for all x ∈ R.

As f, g have R =∞ so they are differentiable over R. Further,

f ′(x) =
∞∑
n=1

(−1)n
x2n−1

(2n− 1)!
= −g, g′(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
= f.

Let h(x) = f 2(x)+g2(x) then h′(x) = 2(f(x)f ′(x)+g(x)g′(x)) = 0. Therefore, h(x) is constant
and h(0) = f(0) + g(0) where f(0) = 1 and g(0) = 0 so h(x) = 1.
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1,3D exp(x) = 1 + x + x2/2 + · · · ≥ 1 + x for all x ≥ 0. By expanding the product of
∏n

j=1(1 + aj)
the first inequality is clear, and the second inequality comes from the fact 1 + aj ≤ exp(aj).

Suppose
∏n

1 (1 + aj) converges then as aj ≥ 0 so the sum
∑
aj converges by the first inequality

and conversely if
∑

j aj converges so does exp(
∑

j aj) so the product converges by the second
inequality.

1,4F (a) is alternating test. For (b), use condensation and comparison tests, the series diverges.

1,9D (a) The first one converges for all x (as expected because it is exp(x)). The second one only
converges at x = 0 (as expected because n!xn is unbounded for any x 6= 0). For the third
one, let an = (n!)2xn

2
then

an+1

an
= (n+ 1)2x2n+1.

Suppose |x| > 1 then an+1

an
→ ∞ and so an is unbounded, so the series cannot converge.

Suppose |x| < 1, then we claim that for n large enough, we have bn = (n!)2xn
2−n < 1. As

bn+1

bn
= (n+ 1)2x2n → 0

and so there exists n such that bn+1 <
bn
2

. Hence for n large enough, bn < 1 and this
implies that

an = (n!)2xn
2

< xn

and so by comparison test we conclude that the series
∑

n an converges absolutely for
|x| < 1. Therefore, R = 1.

(b) Let f(x) = (1 + x)
1
2 and for x ∈ (0, 1) f(x) is infinitely differentiable and

f (n)(x) =
1

2
(
1

2
− 1)(

1

2
− 2) · · · (1

2
− n+ 1)(1 + x)

1
2
−n

and the result follows by applying Taylor’s theorem with some remainder and we check
the remainder tends to 0 and the series converges. We have

cn+1

cn
=

2n− 1

2n+ 2
→ 1

and so it converges for all x < 1.

Now if you pick Lagrange’s remainder then the remainder has the form, cnf
(n)(θx) and

f (n)(θx) < 1 and so the modulus of the remainder is less than |cn|. But as the series
converges so cn → 0.

1,10E (a) is book work. For (b)

(i) Clearly if f is strictly increasing then f is injective. Suppose x ≥ y then f(x) ≥ f(y)
because f is strictly increasing and so if f(x) < f(y) then x < y.
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(ii) For a < x < b we have c < f(x) < d and so c is the minimum and d is the maximum.
Suppose f is not increasing, so we have a < x1 < x2 < b but f(x1) > f(x2). Let M be the
maximum of f on [a, x2] and as f is continuous take x3 with f(x3) = M > f(x2),M > c
and clearly x3 < x2.

Therefore, there exists x4 ∈ (a, x3) such that f(x4) = f(x2) (if this is not clear, apply IVT
to the function g(x) = f(x) − f(x2)). As f is injective this gives a contradiction. This
shows f is increasing. To show it is strictly increasing, use the fact f is injective.

(iii) f attains maximum at b and minimum at a. Suppose f is not continuous at b, then
there exists a sequence xn ∈ [a, b] with xn → b but f(xn) 6→ f(b). We can assume xn is
an increasing sequence (because it is bounded above and converges so we can remove all
’bad’ points). Also, f(xn) is increasing as both f and xn are, and it is bounded above
so f(xn) → l. As f(xn) 6→ f(b) so l < f(b) and pick r with l < r < f(b) so by the
intermediate property we have y such that f(y) = r. But then as f(xn) ≤ l so y > xn for
all n and so the only possibility is y = b but f(y) = r < f(b) which gives a contradiction.
A similar argument shows f is continuous at a.

For general point x ∈ (a, b), suppose f is not continuous at x. For any sequence xn → x
with xn increasing and xn < x, let f(xn) → l1 (limit exists as it is bounded above) and
yn → x with yn decreasing and yn > x, let f(yn) → l2. As f is not continuous at x, we
must have either some sequence xn described above with l1 6= f(x) or some sequence yn
with l2 6= f(x). We may assume l1 6= f(x). Then pick r with l1 < r < f(x) and so we
have some y with f(y) = r. As f(y) > l1 we have y > xn for all n but xn → x so y = x,
which contradicts f(y) < f(x).

1,11E The first two parts are book work. For the third part, consider the function

f(x)(g(b)− g(a))− g(x)(f(b)− f(a))

and apply Rolle’s theorem so we get the Cauchy mean value theorem. Then

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(z)

g′(z)
, z ∈ (a, x).

For all ε > 0, there exists δ > 0 such that for all z − a < δ,

l − ε < f ′(z)

g′(z)
< l + ε,

and so for all x− a < δ,

l − ε < f(x)

g(x)
=
f ′(z)

g′(z)
< l + ε, z < x < a+ δ.

For the last part, apply (iii) once we have

lim
h→0

f(a+ h)− f(a− h)− 2f(a)

h2
= lim

h→0

f ′(a+ h)− f ′(a− h)

2h

(where the numerator tends to 0 as h → 0 because f is continuous). Then since f is twice
differentiable, we have

lim
h→0

f ′(a+ h)− f ′(a− h)

2h
= lim

h→0

f ′(a+ h)− f ′(a)

2h
+lim
h→0

f ′(a)− f ′(a− h)

2h
=
f ′′(a)

2
+
f ′′(a)

2
= f ′′(a).
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1,12F The first two are book work. Then for any D1, D2 we have

s(f,D1) ≤ s(f,D1 ∪D2) ≤ S(f,D1 ∪D2) ≤ S(f,D2).

We have
s(f,D) ≤ p(f,D) ≤ exp(s(f,D))

(if you are not clear see question [1,3D]). Since f is integrable,
∫ b
a
f(x)dx exists and s(f,D) ≤∫ b

a
f(x)dx. Then p(f,D) ≤ exp(

∫ b
a
f(x)dx) because exp is increasing.
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