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1. (i) 205× 160− 39× 841 = 1. (ii) 65× 2171− 54× 2613 = 13.

2. (i) Take b|a, for example, b = 1111, a = 9999. (ii) Take two consecutive Fibonacci numbers, for
example, b = 1597, a = 2584 where b is the 17th Fibonacci number and a is the 18th Fibonacci
number so λ(a, b) = 16.

(iii) We may assume that (a, b) = 1 because for any d > 1, λ(a, b) = λ(ad, bd) (so for each
step of finding the greatest common divisor of (a, b) we multiply both sides of the equation by
d, then this is exactly the same as the algorithm to compute (ad, bd)). Now suppose we write
a = r0, b = r1 and implement Euclidean algorithm,

r0 = q1r1 + r2, r1 = q2r2 + r3, · · · , rk−2 = qk−1rk−1 + rk, rk−1 = qkrk

where λ(a, b) = k and since (a, b) = 1 so k ≥ 2 and rk = 1. We may assume q1 = 1 because the
number of steps of computing (a′, b) is also k where a′ = b+ r2.

As each qi ≥ 1 so using ri = qi+1ri+1 + ri+2 we have ri ≥ ri+1 + ri+2 and since ri+1 > ri+2 we
have ri > 2ri+2. Then by induction we see if k is even then b > r1 > 2

k
2
−1 (as rk = 1) and if k

is odd then b = r1 > 2
k−1
2 . So we have

k < 2
log b

log 2
+ 2 or k < 2

log b

log 2
+ 1.

3. (i) 2x + 2y = 1. (ii) Impossible, if a, b 6= 0 then if (x, y) is a solution, so is (x + b, y − a). If
a = 0 (or b = 0) then if bx = c has a solution then (x, y) is a solution for any y. (iii) x+ y = 1.

4. Let S = {1, . . . , x} and for each n ∈ S write n =
∏

i p
αi
i where pj is prime less than x for each

j. It is clear that αi ≤ log x
log 2

because n < x and p ≥ 2 so consider the number of integers of the

form
∏

i p
αi
i with αi ∈ {0, . . . , log xlog 2

} so there are at most A =
(

1 + log x
log 2

)π(x)
of them so x ≤ A.

Take logarithm on both sides so we only need to check that 1 + log x
log 2

< 2 log x for x ≥ 8.

5. Suppose a > 2 then a− 1 > 1 is a proper factor of an− 1. If n = pq where p, q > 1 then ap− 1
is a proper factor. The converse is not true, for example 211 − 1 = 23× 89.

6. Let p be a prime factor of 2q − 1. Then

2q ≡ 1 mod p, and 2p−1 ≡ 1 mod p by FLT

and since q is a prime so q
∣∣p− 1. Since 2q ≡ 1 mod p so(

2
q+1
2

)2
= 2q+1 ≡ 2 mod p
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so 2 is a square mod p which implies p ≡ ±1 mod 8. Then for 211 the prime factor is 1 mod 11
and ±1 mod 8 so the first one to try is 23 and so we check it is 23× 89.

Here is an elementary proof for the fact that if 2 is a square mod p then p ≡ ±1 mod 8. Let
s = p−1

2
and if 2 ≡ x2 mod p for some x then 2s ≡ xp−1 ≡ 1 mod p. Let

Λ = (−1) · 2 · (−3) · · · =
s∏
i=1

(−1)ii = s!(−1)
s(s+1)

2 .

Then for each odd integer which appear in the product above, observe that

2s = p−1 ≡ −1 mod p, 2(s−2) = p−3 ≡ −3 mod p, · · · , 2(s−i) = 2s−2i ≡ −1−2i mod p, · · ·

so when we consider Λ mod p we can replace each odd integers by some even numbers between
s and p− 1, and so

Λ ≡ 2 · 4 · 6 · · · (p− 1) ≡ 2ss! ≡ s! mod p

using 2s ≡ 1 mod p. Therefore,

s!(−1)
s(s+1)

2 ≡ 2ss! mod p

and so (−1)
s(s+1)

2 = 1 so p ≡ ±1 mod 8.

7. Let σ(n) =
∑

d

∣∣n d and we know σ is multiplicative. Suppose n = 2q−1(2q − 1) then

σ(n) = σ(2q−1)σ(2q − 1) = (2q − 1)(2q) = 2n.

Conversely, if n is perfect, i.e. σ(n) = 2n, and as n is even we write n = 2q−1m for some odd
integer m. Then σ(n) = (2q − 1)σ(m) = 2n = 2qm. As 2q − 1 is coprime to 2q so 2q − 1 divides
m and write m = (2q − 1)k. Then we have

σ((2q − 1)k) = 2qk.

Clearly (2q− 1)k and k are two distinct factors of (2q− 1)k and the sum of them is 2qk. So the
above equality suggests that these two are the only factors of (2q−1)k and so k = 1 (otherwise
1 is another factor) and 2q − 1 is a prime.

8. Suppose we only have finitely many of them, and let p be the largest of them. Let n =
22 · 3 · 5 · · · p − 1, then n has a prime factor q which is congruent to 3 mod 4 because n is 3
mod 4. Also q is coprime to any prime less than or equal to p, so q > p which is a contradiction.

9. 1973.

10. This reduces to x ≡ 337 mod 900 and x ≡ 808 mod 841 so we have x ≡ 58837 mod 900× 841.

11. Use CRT to construct a solution of

x ≡ 0 mod 4, x+ 1 ≡ 0 mod 9, . . . , x+ i ≡ 0 mod p2i , . . .

where 1 ≤ i ≤ 100 and pi is the ith prime.
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12. Both 2, 3 generate (Z/5Z)× and 24 = 1 + 3 × 5, 34 = 1 + 16 × 5 and 3, 16 are prime to 15 so
they generate (Z/5nZ)×. In general, if p > 2 then following the proof in the notes we know
that if g generates (Z/pZ)× and gp−1 = 1 + bp where (b, p) = 1 then g generates (Z/pnZ)× for
all n. For p = 11, 13, take 2. p = 17, take 3 and p = 19 take 2.

13. A ∼= (Z/24Z)× × (Z/32Z)× × (Z/5Z)× × (Z/7Z)× × (Z/13Z)×. The order of 3 in (Z/24Z)× is
4 and −1 6∈ 〈3〉 so by considering the size of the subgroup generated by −1 and 3 we conclude
that (Z/24Z)× = 〈−1, 3〉.
Define the index of a group G to be the smallest integer n such that gn = 1 for all g ∈ G. Then
the index of (Z/24Z)× is 4, the index of (Z/32Z)× is 6, the index of (Z/5Z)× is 4, the index
of (Z/7Z)× is 6 and the index of (Z/13Z)× is 12. So n is the least common multiple of these
numbers which is 12.

14. an ≡ 1 mod N and n is the least such integer because 1 < at < N for any t < n. Thus by
Euler’s Theorem, n

∣∣φ(N). Suppose there are only finitely many q ≡ 1 mod n say q1, . . . , qk.
Let a = nq1 · · · qk and N = an − 1. Then n

∣∣φ(N). It is clear that N is coprime to n, q1, . . . , qk.
We write

N =
∏
i

peii , φ(N) =
∏
i

pe1−1i (pi − 1).

As n is prime to N so n - pj for any j but n
∣∣φ(N) so n

∣∣pj−1 for some j and we know pj cannot
be any qi so this gives a contradiction.

15. This is clear when n ≤ 2 so we assume n ≥ 3. We claim that the order of 5 ∈ (Z/2nZ)× is
2n−2. To prove this, it suffices to show 52n−3 ≡ 1 + 2n−1 mod 2n (this implies 52n−2 ≡ 1 mod 2n

and 2n−3 is not the order so it must be 2n−2). When n = 3 this clearly holds. Suppose this is
true for n, then 52n−3

= 1 + 2n−1 + a2n for some a and then

52n−2

=
(

52n−3
)2

= (1 + 2n−1 + a2n)2 = 1 + 2n + b2n+1

where b = a22n−1 + 2a+ a2n−1 + 2n−3. Therefore 52n−2 ≡ 1 + 2n mod 2n+1 so by induction we
have proved our claim.

Now consider the cyclic subgroup generated by 5. Since 5 has order 2n−2 so the cyclic subgroup
has size 2n−2, and each element in the subgroup must be 1 mod 4, which is in the kernel
(Z/2nZ)× → (Z/4Z)×. But there are 2n−2 integers in {1, . . . , 2n} which are 1 mod 4 and so
the cyclic subgroup generated by 5 is exactly the set of integers which are 1 mod 4, and so the
kernel of the natural map is the cyclic subgroup generated by 5.

Here is an alternative proof. Let H be the kernel and so H consists of the integers which are
1 mod 4 and so |H| = 2n−2. Take an element 1 + 4t ∈ H of order 2. Then we have

1 + 8t+ 16t2 ≡ 1 mod 2n

and so 2n|8t(1 + 2t). But (1 + 2t, 2) = 1 so 2n|8t and so 2n−3|t. This shows that 2n−1|4t and so
4t = 2n−1c. If c is odd then 1 + 4t ≡ 1 + 2n−1 mod 2n and if c is even then 1 + 4t ≡ 1 mod 2n

so the only element of order 2 in H is 1 + 2n−1.

Since H is abelian, it is isomorphic to a product of cyclic groups, say Cn1 × · · ·Cnk
where

n1 · · ·nk = 2n−2 and so each ni is a power of 2 and hence even. Suppose H is not cyclic, then
k ≥ 2. If we write Cni

as Z/niZ, then there is a unique element of order 2 in Cni
which is

ni

2
. Then (n1

2
, 0, · · · , 0) and (0, · · · , nk

2
) are two distinct elements of order 2 in H which is a

contradiction.
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